
Thermodynamic simulation of stepwise precipitation of NH4VO3 and NaHCO3 from carbonating Na3VO4 solution
Thermodynamic simulation was conducted to design a new process of stepwise precipitating NH4VO3 and NaHCO3 from regulating the CO2 carbonation of Na3VO4 solution. Firstly, a new V(V) speciation model for the aqueous solution containing vanadate and carbonate is established by using the Bromley-Zemaitis activity coefficient model. Subsequently, thermodynamic equilibrium calculations are conducted to clarify the behavior of vanadium, carbon, sodium, and impurity species in atmospheric or high-pressure carbonation. To ensure the purity and recovery of vanadium products, Na3VO4 solution is initially carbonated to the pH of 9.3-9.4, followed by precipitating NH4VO3 by adding (NH4)2CO3. After vanadium precipitation, the solution is deeply carbonated to the final pH of 7.3-7.5 to precipitate NaHCO3, and the remaining solution is recycled to dissolve Na3VO4 crystals. Finally, verification experiments demonstrate that 99.1% of vanadium and 91.4% of sodium in the solution are recovered in the form of NH4VO3 and NaHCO3, respectively.