logo

两步热化学制氢循环材料的研究进展

材料科学与工程

两步热化学制氢循环材料的研究进展

晓虎
光石
鹏飞
星礼
雄刚
中国有色金属学报第35卷, 第1期pp.18-33纸质出版 2025-01-28
1400

两步热化学循环制氢可以将太阳能转化为化学能,是一种备受关注的零碳能源可持续利用方式。以特定的氧化物为介质,通过热还原和分解水构成的两步热化学循环,分别产生氧气和氢气,不需要进行气体分离。金属氧化物作为两步热化学循环制氢的关键材料,直接影响产氢速率。因此,本文系统地综述了铈基氧化物、铁基氧化物和钙钛矿材料用于两步热化学循环制氢工艺的研究进展。钙钛矿材料产氢效率高,且具有良好的循环稳定性。通过表面改性和创新合成方法调控材料产氢率,以及制备高活性和稳定性的复合材料,是未来两步热化学循环制氢的重要发展方向。

热化学制氢分解水太阳能

长期大规模使用化石能源,大量排放二氧化碳,造成全球气候变暖,给人类的生存和发展带来潜在的威胁。世界各国纷纷发起减少碳排放的号召,中国承诺在2030年实现“碳达峰”,2060年达到“碳中和”[1]。同时,由于化石能源不可再生,寻找可持续的化石能源替代品是新时代能源发展的趋势,对降低化石能源依赖度具有重要意义[2]。氢能作为一种能量载体[3],具有燃烧无污染、热值高、资源丰富以及可再生的特点[4-6],是公认的有效清洁能源之一。氢能在能源领域应用十分广泛,比如氢燃料电池[7]和氢燃料内燃机[8-9]。以氢燃料电池为例,直接将氢的化学能转换为电能,不仅能量转化率高,而且不产生碳排放[10-11]。随着全球能源加速向低碳乃至零碳转型,氢能应用场景日趋多元,其规模化、低成本、高效的制氢技术亟待突破。

随着氢能应用领域的不断拓展,科研者对生产氢气的方法进行了广泛研究。寻求效率高的制氢方法成为氢能领域的研究热点。目前,主要制氢方法如表1所示。其中,天然气制氢可以通过水蒸气重整、部分氧化、自热重整、CH4/CO2重整以及催化裂解等技术,实现大规模制氢[12-16]。但其制氢过程能耗和CO2排放量均较大。煤气化作为天然气制氢中的特例,虽然无CO2排放,但其过程中会产生大量的含硫气体,故环保性较差[14, 17-18]。甲醇水蒸气重整制氢可通过甲醇分解、甲醇部分氧化和甲醇蒸汽重组三种途径实现,整个过程能耗和成本低,产氢率高[19-23]。但甲醇的化学性质活泼,其存储和运输困难,必须依赖特殊的设备来确保其安全性。电解水制氢是一种将电能转化为化学能的环境友好型技术,它不仅能持续产生氢气和氧气,还能实现零碳排放[24-30]。目前,该技术已在工业上应用,但面临电解温度高、制氢效率低、高能耗和高成本的挑战[25, 27]。光催化制氢可利用太阳光作为光源来驱动半导体材料催化水分解产生氢气[23, 31-37]。该技术能直接利用太阳能,且能量转换效率高,能实现零污染排放;但存在催化剂开发和设计困难、制氢效率不高等问题,这极大地限制了其工业化应用[38-40]。生物质制氢可利用植物和农作物残渣等有机物质,在生物或化学反应中产生氢气[41-43]。此方法有利于资源的二次利用,能减少对化石能源生产氢气的依赖。然而,生物质制氢技术不够成熟,面临生产成本高、技术难度大等挑战[44]

表1
生产氢气的方法
RenewableNon-renewable

Photocatalytic hydrogen

production

Natural gas to hydrogen
Electrolytic waterHydrogen from Methanol
Biomass to hydrogen

Thermochemical hydrogen

production

展开更多

两步热化学循环制氢可以直接将太阳能转化为化学能(氢能),其能源效率高,是一种备受关注的零碳可持续的制氢技术[45]。两步热化学分解水制氢通过特定的氧化物直接热分解水获得氢气,不需要气体分离步骤,且氧化物材料可以循环利用[46-50]。该方法产生的氢气可直接用作燃料[51]。与其他制氢方法相比[48, 52],两步热化学循环存在以下优点:1) 其制氢过程只需输入热量(太阳能)和水,氧化物材料可循环利用,过程环境友好且可持续;2) 两步热化学循环制氢技术包括热还原和水分解两个过程,分别产生氧气和氢气,其过程安全高效。因此,太阳能热化学循环分解水制氢提供了一条未来可持续生产清洁能源的方式,被认为是非常有前途的生产氢气的途径之一[52-53]。循环材料的活性及稳定性是限制两步热化学循环分解水制氢的关键因素[54]。鉴于目前对不同循环材料在两步热化学循环分解水制氢中的应用缺乏系统性综述,故本文将从循环材料的晶体结构、热力学和动力学等角度,系统综述两步热化学制氢中铈基氧化物、铁基氧化物和钙钛矿等循环材料的研究进展,并对循环材料未来的研究方向进行展望。

1 两步热化学制氢的基本原理

热化学循环分解水制氢包括两步循环、三步循环和四步循环[55]。增加循环步骤可以降低反应的最高温度,提高能量转换效率。但是,随着循环步骤的增加,会导致系统复杂性和成本增加,不利于工业应用[56]。目前,两步循环是热化学分解水制氢领域的主流方向。如图1所示,太阳能两步热化学循环分解水制氢只包含氧化和还原两个步骤,即金属氧化物由高价态变为低价态的还原反应,低价态金属氧化物夺取水中氧原子成为高价态的氧化反应。该过程的反应温度一般为600~2000 ℃。其化学反应过程可以表示如下:

图1
基于太阳能的两步热化学循环裂解水制氢的反应原理
pic

还原反应,

MOx→MOx-y+picO2 (1)

氧化反应,

MOx-y+yH2O→MOx+yH2 (2)

式中:M表示金属原子;MOx为高价态金属氧化物;MOx-y为相对应的低价态金属氧化物,其中xy均为常数。

因此,两步热化学循环制氢的工艺流程可概括为两部分:第一部分,金属氧化物作为循环材料,在高温下分解为氧气和次价金属氧化物;第二部分,次价金属氧化物在低于第一部分中分解反应温度下与水反应,产生氢气和高价态金属氧化物(即第一部分中的金属氧化物),这两部分组成热化学制氢的两步循环系统。

2 铈基氧化物材料

二氧化铈具有立方晶系结构,每个Ce4+的配位数为8,氧离子填充在Ce4+之间(见图2(a))。因氧化铈独特的电子结构使得它更易在Ce4+和Ce3+之间进行可逆电荷转移,形成Ce3+时会产生氧空位(见图2(b))。这些氧空位有助于改善二氧化铈晶格中氧的自扩散和吸附性能,从而促进氧化还原反应的进行[57-58]。铈基氧化物具有丰富的氧空位,被认为是两步热化学制氢方法中非常有潜力的循环材料[59-63]。在这个过程中,铈基氧化物先在较高温度下被激活,释放出氧气;然后在较低温度下分解水,产生氢气。该过程的化学反应为:

图2
CeO2的晶体结构
pic

还原反应,

CeO2pic (3)

氧化反应,

picpic (4)

早期,BAMBERGER等[64]研究了铈和碱土磷酸盐反应的热化学分解水的循环过程。首先,在600~1000 ℃条件下,二氧化铈与磷酸、偏磷酸盐和焦磷酸盐的衍生物反应产生氧气和磷酸铈;然后,在700~1200 ℃的条件下,磷酸铈与水蒸气反应产生氢气和二氧化铈。这两个反应过程的实质是铈基氧化物材料中Ce(Ⅲ)的氧化和Ce(Ⅳ)的还原。随后,OTSUKA等[65]从动力学角度研究了二氧化铈在H2气氛中的还原行为,并提出了在低温(573 K)和低压(2.1×103 Pa)条件下,利用含添加剂的铈基氧化物作为催化剂从水中提取氢气。但是,该方法在第一步还原阶段需要使用H2作为还原剂。为简化氧化还原过程和降低制氢成本,人们对铈基氧化物进行了大量尝试,以寻求工艺流程更加简便,且无需消耗还原介质的方法来两步热化学制氢。ABANADES等[51]提出了太阳能热化学循环分解水的方法,将太阳光聚焦到受惰性气体保护的反应器中,达到二氧化铈热解的温度,实现了无介质还原。更重要的是,采用太阳能作为热源可从源头实现两步热化学分解水的零碳排放。因此,基于太阳能的铈基氧化物两步热化学循环制氢成为了研究热点。CHUEH等[61]设计一种由多孔单片圆柱体二氧化铈和隔热腔接收器组成的太阳能制氢反应器(见图3(a)),可以实现较大规模的两步热化学分解水制氢,多孔单片二氧化铈可稳定工作500多个循环。如图3(b)所示,该方法中氢气和氧气的析出速率较快,但是二氧化铈还原的温度较高。与差速反应器对比,太阳能反应器中O2和H2的产生速率和反应温度更具优势(见图3(c))。产生氢气和氧气的瞬时速率在前面100个循环内随着循环圈数的增加稍有下降,在随后的400个循环内基本保持稳定(见图3(d))。总体来说,该研究展示了铈基氧化物循环材料较好的稳定性,但是还原温度过高,会增加过程能耗,导致太阳能转换效率低。

图3
太阳能驱动的两步热化学循环生产燃料[61]
pic

研究者们通过金属阳离子掺杂二氧化铈合成新的铈基氧化物,以引入额外的氧空位或改变晶格结构的方式,不仅促进氧离子传导性和材料表面氧活性,还提高了氢气产率。研究表明[66-68],采用多孔状二氧化铈增大比表面积,能进一步提高二氧化铈的还原率和制氢速率。LI等[69]制备了过渡金属和镧系金属掺杂二氧化铈样品,其对太阳光的吸收性能均得到明显改善(见图4(a)和(b))。金属掺杂二氧化铈样品比纯二氧化铈的带隙(3.12 eV)窄的多,掺杂过渡金属的样品带隙可低至1.57~2.49 eV(见图4(c))。样品带隙越小,相同条件下在太阳光照下产生的电子空穴对越多,产生的氢气也越多。图4(d)和4(e)表明,纯CeO2(未掺杂)的平均H2产率为9.45 μmol/(g·h),而金属掺杂二氧化铈样品的H2产率均在10 μmol/(g·h)以上。特别地,Cu掺杂CeO2样品的H2产率最高可达18.36 μmol/(g·h),接近纯CeO2样品的2倍[70]。因此,通过掺杂过渡金属或镧系金属,可以有效提高铈基氧化物两步热化学循环制氢的效率。除实验研究以外[71-73],学者们还从热力学和动力学角度对铈基氧化物在两步热化学循环制氢中的应用进行理论研究,纯CeO2的结构稳定性大于铁氧化物,且CeO2与MOx(M=Mn,Fe,Ni,Cu)掺杂均可以增加氧空位,提高氢气产量,这与前人研究的实验结果一致。

图4
金属掺杂二氧化铈的两步热化学循环制氢[69]
pic

相同条件下,采用多孔状铈基氧化物,能够增加材料的比表面积,可持续进行反应产生更多的氢气。此外,增加氧空位可加速铈基氧化物中氧的扩散,从而促进反应进行,提高产氢速率。因此,未来可从增加材料的比表面积及氧空位方向努力,以提高氢气产率。

3 铁基氧化物材料

在早期的热化学循环制氢研究中,Fe3O4/FeO是最早被提出的循环材料之一[74-76]。Fe3O4/FeO因热还原阶段稳定性好,且具有非挥发特性,已成为热化学研究中的一个典型循环材料。磁铁矿的两步热化学反应为:

还原反应,

Fe3O4→3FeO+picO2 (5)

氧化反应,

3FeO+H2O→Fe3O4+H2 (6)

SVOBODA等[77]研究了磁铁矿在高温和混合气体(H2、CO)条件下的还原,以及蒸汽中发生氧化释放氢气的循环过程。研究发现,磁铁矿还原是制备氢气过程中较为困难的阶段。此外,KARATZA等[78]研究了电场、磁场和温度等因素对Fe3O4直接分解水制备氢气的影响,磁场和电场越大,氢气的产率越高。相对于电场和磁场,温度对其分解水的影响是次要的。结合太阳能驱动Fe3O4/FeO氧化还原系统的吸热反应,对FeO/H2O体系进行热力学分析,如图5所示,产生H2的量随温度的升高而降低。这与文献[79-80]结果一致。随着分解水反应的进行,FeO出现显著烧结[81-85],比表面积减小,造成重复循环困难,产氢速率下降,这与KODAMA等[86]的研究结果一致。在数百次中试规模的热化学循环制氢实验中,铁基氧化物表现出比铈基氧化物更差的结构稳定性[87-88]。除氧化物循环材料外,EROGBOGBO等[89]采用激光加热的方式,将SiH4热解为纳米硅,在无光、电和热的辅助条件下,纳米硅(10 nm)分解水生成氢气的速率比块状硅高1000倍。但纳米硅分解水过程中会生成一层二氧化硅附着在硅的表面,从而阻碍反应进行。

图5
FeO/H2O体系在标准大气压下的热力学平衡组成
pic

同时,学者们对铁基氧化物材料进行热力学计算研究[90-91], Fe3O4的分解温度超过其沸点,因此采用金属掺杂形成尖晶石铁酸盐以降低分解温度。虽然材料的分解温度降低了,但其烧结问题仍存在。针对两步热化学循环制氢中循环材料烧结的问题,不少学者将ZrO2负载的铁氧化物进行探索[92-97]。研究发现,ZrO2的加入不仅降低了分解水制氢过程中材料的团聚,而且还提高了材料表面活性,从而促进氢气产生[52]。因此,对于铁基氧化物材料,通过掺杂的方式可增加其表面积,减少材料的团聚,增加材料的循环次数,进一步提高产氢量。循环材料烧结团聚的情况虽有所改善,但并未从根本解决问题。因此,寻找稳定性好、高活性、氧空位充足和比表面积大的热化学制氢循环材料是非常有必要的。

4 钙钛矿材料

传统的太阳能热化学循环制氢材料由于结构组成空间有限,无法将热力学、动力学及相稳定性能同时发挥到理想状态[98]。因此,寻求一种能够满足当前太阳能热化学制氢所需的循环材料是至关重要的。而钙钛矿作为一种新兴材料,在能源、光电子、光学和传感器等领域应用广泛[99-104]。钙钛矿是一种由至少两种不同金属元素和氧组成的化合物,化学式为ABX3。其中,钙钛矿型氧化物的化学式一般为ABO3[105-106]。如图6所示,钙钛矿晶体结构为立方相,A点位通常是位于整个立方体的中心的较大阳离子,B点位是形成晶胞的中心的较小阳离子,氧离子占据立方体的顶点。这种结构使得其具有特殊的稳定性[107-109],能够满足太阳能热化学制氢中对循环材料的需求。

图6
一种理想ABO3型钙钛矿的立方晶体结构(空间群P1)
pic

钙钛矿结构中,通过将A、B位置的金属进行不同组合,以改变氧化还原焓和熵[110],从而改变钙钛矿的热力学性质。而重新组合后的钙钛矿获得高晶格的氧离子扩散速率,有利于热化学循环过程中氧化还原动力学的快速进行[83, 111]。此外,钙钛矿氧化物热膨胀系数通常相对较低[112-114],意味着在高温下,其晶体结构不易发生显著变形,能够保持原有的晶体结构和性能特征,表现出较好的稳定性,这些优点也使其在太阳能热化学循环制氢中具有较大的应用潜力。其化学反应方程式为[115]

还原反应,

picpic+pic (7)

氧化反应,

pic+H2O→pic+H2 (8)

式中:γβ分别为还原半循环开始和结束时氧原子的非化学计量值,N=β-γ,为整个循环过程中氧原子非化学计量值的变化。

为探索钙钛矿材料在太阳能热化学循环制氢中的应用潜力,学者们在理论计算方面进行众多研究[116-121]。VIETEN等[110]提出一种适用于太阳能热化学循环制氢的钙钛矿固溶体材料设计方法,并基于密度泛函理论,计算了240多种钙钛矿到还原产物相的氧化还原焓,其值为340~706 kJ/mol,其中超过50%的氧化还原焓为50~400 kJ/mol,这与钙钛矿在热化学循环制氢中的应用密切相关。CARRILLO等[118]建立了热力学过程模型来预测钙钛矿(La1-x(Sr,Ca)xMn1-yAlyO3)将太阳能转化H2的效率,并与纯二氧化铈进行比较。在等温条件下,La0.6Sr0.4Mn0.6Al0.4O3和CeO2将太阳能转化H2的效率分别为35.17%、28.26%,La0.6Sr0.4Mn0.6Al0.4O3生产H2的效率优于CeO2。除理论研究外,BARCELLOS等[122]对一种很有热化学循环制氢应用潜力的钙钛矿(BaCe0.25Mn0.75O3-δ/BCM)进行实验研究,采用分段式加热(电加热到氧化温度,再由激光加热到还原温度)进行分解水制氢。图7(a1)和(a2)给出BCM、CeO2材料分别进行两个完整的水分解循环数据。在刚开始的热分解过程中,受动力学和热力学的限制,BCM比CeO2释放的O2多,但在第二个水分解循环中,BCM的O2释放量(65 μmol/g)明显少于第一个循环(82 μmol/g)。BCM在氧化步骤的H2释放量达到了140 μmol/g,CeO2是50 μmol/g,BCM接近CeO2的3倍。对于BCM的循环稳定性,如图7(b)和(c)所示,BCM进行分解水制氢的50个循环中产生H2的速率及H2、O2的总量基本保持不变,充分表明 BCM在两步热化学循环制氢中的稳定性能优异。

图7
BCM和CeO2的两步热化学循环制氢[122]
pic

WANG等[123]合成了钙钛矿La1-xCaxMn1-yAlyO3(x, y=0.2, 0.4, 0.6或0.8),并从中筛选出性能优异的热化学循环制氢钙钛矿材料(La0.6Ca0.4Mn0.6Al0.4O3/LCMA-C0.4A0.4),其XRD谱如图8(a)所示。可以看出其衍射峰为典型正交钙钛矿结构,与文献[124]一致。样品表面由众多小颗粒连接的分层多孔状结构(见图8(b))组成,且金属阳离子的分布比较均匀(见图8(d)),粒径在20 nm左右(见图8(c))。钙钛矿LCMA-CxA0.4中Ca的掺杂水平与H2生成速率密切相关。如图8(e)所示,Ca的掺杂水平由0.2升至0.4时,H2生成速率有所提高,这从动力学角度表明Ca的掺杂有利于加快反应进行;当Ca的掺杂量由0.4继续提高至0.8时,H2生成速率反而下降。且相同条件下,LCMA-C0.4A0.4生成H2的量为 429 μmol/g,是二氧化铈的8倍。由此得知,钙钛矿材料在两步热化学循环制氢时,效率高且连续循环性能优异。

图8
LCMA-C0.4A0.4的两步热化学循环制氢[123]
pic

相比其他材料,钙钛矿在产氢效率和重复循环方面具有较好的表现。但随着温度和循环次数的增加,几乎所有两步热化学循环制氢材料都会存在团聚现象[125]。为进一步提升钙钛矿在两步热化学循环制氢中的性能,通过金属掺杂进一步增加材料表面氧空位[126-127],调整钙钛矿的电子结构[128],以及酸刻蚀对钙钛矿表面进行改性处理等方式[129],均可提高钙钛矿材料氧化还原过程的表面氧活性,从而进一步提高材料的重复循环性能,以最终达到产氢量高的目的。此外,还可以降低两步热化学循环制氢中热还原和分解水两个阶段的温度差,以实现等温热化学还原[130]提升钙钛矿在两步热化学循环制氢中性能的目的。

5 结论与展望

目前,全球低碳经济发展的趋势下,氢气在化工和能源行业得到了广泛应用,采用经济环保的方法生产氢气势在必行。太阳能两步热化学循环制氢不仅能够利用可再生资源完成能量的存储和转化,而且全程无污染排放。几十年来,人们对太阳能两步热化学循环制氢进行了大量的研究,而循环材料是需要解决的核心问题。本文综述了以铈基氧化物、铁基氧化物和钙钛矿氧化物作为循环材料的两步热化学循环制氢的研究进展。增加循环材料的比表面积和氧空位有利于促进两步热化学循环制氢反应的可持续性,增加产氢量。另外,金属掺杂也能降低第一步还原反应的温度,增加材料的氧空位,减少循环材料团聚问题,加快反应进行。

尽管两步热化学循环制氢具有巨大应用潜力,但是高性能的金属氧化物循环材料在未来的开发应用中仍存在挑战。未来可以改进的地方:一方面,经过表面改性处理(酸刻蚀)和创新合成新方法调控循环材料的微观组织结构,增大循环材料的比表面积,改善产氢速率;另一方面,开发多功能复合材料,增加循环材料的氧空位,提高循环材料的活性和连续循环稳定性或者寻找一种更适合两步热化学循环制氢的新型金属氧化物来代替当前的循环材料。

REFERENCES
1焦 钒, 刘泰秀, 陈 晨, 等. 太阳能热化学循环制氢研究进展[J]. 科学通报, 2022, 67(19): 2142-2157. doi:10.1023/a:1010650624155
2MEHRPOOYA M, HABIBI R. A review on hydrogen production thermochemical water-splitting cycles[J]. Journal of Cleaner Production, 2020, 275:123836. doi:10.1023/a:1010650624155
3翟 康, 李孔斋, 祝 星, 等. 两步热化学分解水制氢用氧交换材料[J]. 化学进展, 2015, 27(10): 1481-1499. doi:10.1023/a:1010650624155
4李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11. doi:10.1023/a:1010650624155
5李 鑫, 李安定, 李 斌, 等. 太阳能制氢研究现状及展望[J]. 太阳能学报, 2005, 26 (1): 131-137. doi:10.1023/a:1010650624155
6张 轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371. doi:10.1023/a:1010650624155
7MAGHSOUDI P, KAABINEJADIAN A, MEHDI HOMAYOUNPOUR M, et al. Hydrogen production for fuel cell application via thermo-chemical technique: an analytical evaluation[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101413. doi:10.1023/a:1010650624155
8OUDEJANS D, OFFIDANI M, CONSTANTINOU A, et al. A comprehensive review on two-step thermochemical water splitting for hydrogen production in a redox cycle[J]. Energies, 2022, 15(9): 3044. doi:10.1023/a:1010650624155
9WHITE C M, STEEPER R R, LUTZ A E. The hydrogen-fueled internal combustion engine: a technical review[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1292-1305. doi:10.1023/a:1010650624155
10SINGLA M K, NIJHAWAN P, OBEROI A S. Hydrogen fuel and fuel cell technology for cleaner future: A review[J]. Environmental Science and Pollution Research International, 2021, 28(13): 15607-15626. doi:10.1023/a:1010650624155
11FILINA O A, MALOZYOMOV B V, SHCHUROV N I. Generation of hydrogen fuel on board vehicles with internal combustion engines[J]. International Journal of Hydrogen Energy, 2024, 93: 320-327. doi:10.1023/a:1010650624155
12BORETTI A, BANIK B K. Advances in hydrogen production from natural gas reforming[J]. Advanced Energy and Sustainability Research, 2021, 2(11): 2100097. doi:10.1023/a:1010650624155
13SCHNEIDER S, BAJOHR S, GRAF F, et al. State of the art of hydrogen production via pyrolysis of natural gas[J]. ChemBioEng Reviews, 2020, 7(5): 150-158. doi:10.1023/a:1010650624155
14谢欣烁, 杨卫娟, 施 伟, 等.制氢技术的生命周期评价研究进展[J]. 化工进展, 2018, 37(6): 2147-2158. doi:10.1023/a:1010650624155
15闫秋会, 孙冰洁, 张倩倩. 新型超临界水中煤气化制氢产物的CO2分离过程[J]. 化工进展, 2015, 34(1): 61-64, 107. doi:10.1023/a:1010650624155
16陈时熠, 向文国, 王 东, 等. 一种基于煤气化制取氢气并分离CO2的反应器的设计及其模拟[J]. 化工进展, 2010, 29(S1): 709-710. doi:10.1023/a:1010650624155
17JIANG L L, XUE D, WEI Z, et al. Coal decarbonization: a state-of-the-art review of enhanced hydrogen production in underground coal gasification[J]. Energy Reviews, 2022, 1(1): 100004. doi:10.1023/a:1010650624155
18MIDILLI A, KUCUK H, TOPAL M E, et al. A comprehensive review on hydrogen production from coal gasification: challenges and opportunities[J]. International Journal of Hydrogen Energy, 2021, 46(50): 25385-25412. doi:10.1023/a:1010650624155
19GARCIA G, ARRIOLA E, CHEN W H, et al. A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability[J]. Energy, 2021, 217: 119384. doi:10.1023/a:1010650624155
20PALO D R, DAGLE R A, HOLLADAY J D. Methanol steam reforming for hydrogen production[J]. Chemical Reviews, 2007, 107(10): 3992-4021. doi:10.1023/a:1010650624155
21SONG L Q, MEN Y, WANG J G, et al. Methanol steam reforming for hydrogen production over ternary composite ZnyCe1Zr9Ox catalysts[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9592-9602. doi:10.1023/a:1010650624155
22冯 凯, 孟 浩, 杨宇森, 等. 甲醇水蒸气重整制氢催化剂的研究进展[J]. 化工进展, 2024, 43(10): 5498-5516. doi:10.1023/a:1010650624155
23李亮荣, 彭 建, 付 兵, 等.碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520. doi:10.1023/a:1010650624155
24ANWAR S, KHAN F, ZHANG Y, et al. Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. International Journal of Hydrogen Energy, 2021, 46(63): 32284-32317. doi:10.1023/a:1010650624155
25BURTON N, PADILLA R, ROSE A, et al. Increasing the efficiency of hydrogen production from solar powered water electrolysis[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110255. doi:10.1023/a:1010650624155
26DOS K G, ECKERT C T, DLA E, et al. Hydrogen production in the electrolysis of water in Brazil: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 563-571. doi:10.1023/a:1010650624155
27SHIVAKUMAR S, HIMABINDU V. Hydrogen production by PEM water electrolysis—A review[J]. Materials Science for Energy Technologies, 2019, 2(3): 442-454. doi:10.1023/a:1010650624155
28URSUA A, GANDIA L M, SANCHIS P. Hydrogen production from water electrolysis: current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426. doi:10.1023/a:1010650624155
29WANG S, LU A, ZHONG CJ. Hydrogen production from water electrolysis: Role of catalysts[J]. Nano Convergence, 2021, 8(1): 4. doi:10.1023/a:1010650624155
30李 丹, 李 杨, 陈荣生, 等. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186. doi:10.1023/a:1010650624155
31CHEN X, SHEN S, GUO L, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Reviews, 2010, 110(11): 6503-6570. doi:10.1023/a:1010650624155
32KUMARAVEL V, MATHEW S, BARTLETT J, et al. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances[J]. Applied Catalysis B: Environmental, 2019, 244: 1021-1064. doi:10.1023/a:1010650624155
33PREETHI V, KANMANI S. Photocatalytic hydrogen production[J]. Materials Science in Semiconductor Processing, 2013, 16(3): 561-575. doi:10.1023/a:1010650624155
34TEETS T S, NOCERA D G. Photocatalytic hydrogen production[J]. Chemical Communications, 2011, 47(33): 9268-9274. doi:10.1023/a:1010650624155
35吴晨赫, 刘彧旻, 杨昕旻, 等. 粉体光催化全水分解技术研究进展[J]. 化工进展, 2024, 43(4): 1810-1822. doi:10.1023/a:1010650624155
36朱启安, 王树峰, 王先友, 等. 利用太阳能光解水制H2催化剂研究进展[J]. 材料导报, 2006(11): 43-46. doi:10.1023/a:1010650624155
37黄火根, 陈 亮, 李 嵘, 等. Ti36Zr40Ni20Pd4准晶的热稳定性与室温储氘性能[J]. 金属学报, 2010, 46(5): 629-633. doi:10.1023/a:1010650624155
38CHRISTOFORIDIS K C, FORNASIERO P. Photocatalytic hydrogen production: Arift into the future energy supply[J]. ChemCatChem, 2017, 9(9): 1523-1544. doi:10.1023/a:1010650624155
39ESCOBEDO S, DE LASA H. Synthesis and performance of photocatalysts for photocatalytic hydrogen production: future perspectives[J]. Catalysts, 2021, 11(12): 1505. doi:10.1023/a:1010650624155
40饶文涛, 李文武, 马志力. 一种光解制氢新技术的开发及应用展望[J]. 上海节能, 2024(3): 430-434. doi:10.1023/a:1010650624155
41PAL D B, SINGH A, BHATNAGAR A. A review on biomass based hydrogen production technologies[J]. International Journal of Hydrogen Energy, 2022, 47(3): 1461-1480. doi:10.1023/a:1010650624155
42王 博, 宋永一, 王 鑫, 等. 有机固体废弃物热化学制氢研究进展[J]. 化工进展, 2021, 40(2): 709-721. doi:10.1023/a:1010650624155
43岳国君, 林海龙, 彭元亭, 等.以生物质为原料的未来绿色氢能[J]. 化工进展, 2021, 40(8): 4678-4684. doi:10.1023/a:1010650624155
44LEVIN D B, CHAHINE R. Challenges for renewable hydrogen production from biomass[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4962-4969. doi:10.1023/a:1010650624155
45张 平, 于 波, 陈 靖, 等. 热化学循环分解水制氢研究进展[J]. 化学进展, 2005, 17(4): 643-650. doi:10.1023/a:1010650624155
46BAYON A, DE A CALLE A, GHOSE K K, et al. Experimental, computational and thermodynamic studies in perovskites metal oxides for thermochemical fuel production: A review[J]. International Journal of Hydrogen Energy, 2020, 45(23): 12653-12679. doi:10.1023/a:1010650624155
47BHOSALE R R, ALMOMANI F. Hydrogen production via solar driven thermochemical cerium oxide-cerium sulfate water splitting cycle[J]. International Journal of Hydrogen Energy, 2020, 45(17): 10381-10390. doi:10.1023/a:1010650624155
48ORFILA M, SANZ D, LINARES M, et al. H2 production by thermochemical water splitting with reticulated porous structures of ceria-based mixed oxide materials[J]. International Journal of Hydrogen Energy, 2021, 46(33): 17458-17471. doi:10.1023/a:1010650624155
49ZHU L, YANG W, PAN H, et al. Coupling the full solar spectrum with a two-step thermo-electrolytic cycle for efficient solar hydrogen production[J]. Energy Conversion and Management, 2023, 290: 117161. doi:10.1023/a:1010650624155
50祝 星, 王 华, 魏永刚, 等. 金属氧化物两步热化学循环分解水制氢[J]. 化学进展, 2010, 22(5): 1010-1020. doi:10.1023/a:1010650624155
51ABANADES S, FLAMANT G. Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides[J]. Solar Energy, 2006, 80(12): 1611-1623. doi:10.1023/a:1010650624155
52MAO Y, GAO Y, DONG W, et al. Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide—A review[J]. Applied Energy, 2020, 267: 11486. doi:10.1023/a:1010650624155
53ORUC O, DINCER I. Assessing the potential of thermo-chemical water splitting cycles: a bridge towards clean and sustainable hydrogen generation[J]. Fuel, 2021, 286: 119325. doi:10.1023/a:1010650624155
54OZCAN H, EL-EMAM R S, AMINI HORRI B. Thermochemical looping technologies for clean hydrogen production-current status and recent advances[J]. Journal of Cleaner Production, 2023, 382: 135295. doi:10.1023/a:1010650624155
55BEGHI G. A decade of research on thermochemical hydrogen at the Joint Research Centre, Ispra[J]. International Journal of Hydrogen Energy, 1986, 11(12): 761-771. doi:10.1023/a:1010650624155
56LEE J E, SHAFIQ I, HUSSAIN M, et al. A review on integrated thermochemical hydrogen production from water[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4346-4356. doi:10.1023/a:1010650624155
57HUANG X, ZHANG K, PENG B, et al. Ceria-based materials for thermocatalytic and photocatalytic organic synthesis[J]. ACS Catalysis, 2021, 11(15): 9618-9678. doi:10.1023/a:1010650624155
58MA Y, GAO W, ZHANG Z, et al. Regulating the surface of nanoceria and its applications in heterogeneous catalysis[J]. Surface Science Reports, 2018, 73(1): 1-36. doi:10.1023/a:1010650624155
59TIAN J Q, LI J P, GUO Y D, et al. Oxygen vacancy mediated bismuth-based photocatalysts[J]. Advanced Powder Materials, 2024, 3(4): 100201. doi:10.1023/a:1010650624155
60BHOSALE R R, TAKALKAR G, SUTAR P, et al. A decade of ceria based solar thermochemical H2O/CO2 splitting cycle[J]. International Journal of Hydrogen Energy, 2019, 44(1): 34-60. doi:10.1023/a:1010650624155
61CHUEH W C, FALTER C, ABBOTT M, et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J]. Science, 2010, 330(6012): 1797-1801. doi:10.1023/a:1010650624155
62GOKON N, SAGAWA S, KODAMA T. Comparative study of activity of cerium oxide at thermal reduction temperatures of 1300-1550 ℃ for solar thermochemical two-step water-splitting cycle[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14402-14414. doi:10.1023/a:1010650624155
63SHARMA J P, KUMAR R, AHMADI M H, et al. Thermodynamic analysis on CSP integrated cerium oxide (CeO2-CeO1.72/1.83) water splitting cycle for hydrogen production[J]. International Journal of Hydrogen Energy, 2024, 53: 1259-1268. doi:10.1023/a:1010650624155
64BAMBERGER C E, Robinson P R. Thermochemical splitting of water and carbon dioxide with cerium compounds[J]. Inorganica Chimica Acta, 1980, 42: 133-137. doi:10.1023/a:1010650624155
65OTSUKA K, HATANO M, MORIKAWA A. Hydrogen from water by reduced cerium oxide[J]. Journal of Catalysis, 1983, 79(2): 493-496. doi:10.1023/a:1010650624155
66DAVENPORT T C, KEMEI M, IGNATOWICH M J, et al. Interplay of material thermodynamics and surface reaction rate on the kinetics of thermochemical hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42(27): 16932-16945. doi:10.1023/a:1010650624155
67FURLER P, SCHEFFE J R, STEINFELD A. Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor[J]. Energy & Environmental Science, 2012, 5(3): 6098-6103. doi:10.1023/a:1010650624155
68HAEUSSLER A, ABANADES S, JULBE A, et al. Solar thermochemical fuel production from H2O and CO2 splitting via two-step redox cycling of reticulated porous ceria structures integrated in a monolithic cavity-type reactor[J]. Energy, 2020, 201: 117649. doi:10.1023/a:1010650624155
69LI R, WEN C, YAN K, et al. The water splitting cycle for hydrogen production at photo-induced oxygen vacancies using solar energy: Experiments and DFT calculation on pure and metal-doped CeO2[J]. Journal of Materials Chemistry A, 2023, 11(13): 7128-7141. doi:10.1023/a:1010650624155
70XU C, ZHANG Y, CHEN J, et al. Enhanced mechanism of the photo-thermochemical cycle based on effective Fe-doping TiO2 films and DFT calculations[J]. Applied Catalysis B: Environmental, 2017, 204: 324-334. doi:10.1023/a:1010650624155
71HAO Y, YANG C, HAILE S M. Ceria-zirconia solid solutions (Ce1-xZrxO2-δ, x≤0.2) for solar thermochemical water splitting: Athermodynamic study[J]. Chemistry of Materials, 2014, 26(20): 6073-6082. doi:10.1023/a:1010650624155
72CHUEH W C, HAILE S M. A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368(1923): 3269-3294. doi:10.1023/a:1010650624155
73KANEKO H, MIURA T, ISHIHARA H, et al. Reactive ceramics of CeO2-MOx(M=Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy[J]. Energy, 2007, 32(5): 656-663. doi:10.1023/a:1010650624155
74NAKAMURA T. Hydrogen production from water utilizing solar heat at high temperatures[J]. Solar Energy, 1977, 19(5): 467-475. doi:10.1023/a:1010650624155
75张 磊, 张 平, 王建晨. 金属氧化物热化学循环分解水制氢热力学基础及研究进展[J]. 太阳能学报, 2006, 27(12): 1263-1269. doi:10.1023/a:1010650624155
76王宝辉, 吴红军, 刘淑芝, 等. 太阳能分解水制氢技术研究进展[J]. 化工进展, 2006, 25(7): 733-738. doi:10.1023/a:1010650624155
77SVOBODA K, SLOWINSKI G, ROGUT J, et al. Thermodynamic possibilities and constraints for pure hydrogen production by iron based chemical looping process at lower temperatures[J]. Energy Conversion and Management, 2007, 48(12): 3063-3073. doi:10.1023/a:1010650624155
78KARATZA D, KONSTANTOPOULOS C, CHIANESE S, et al. Hydrogen production through water splitting at low temperature over Fe3O4 pellet: Effects of electric power, magnetic field, and temperature[J]. Fuel Processing Technology, 2021, 211: 106606. doi:10.1023/a:1010650624155
79ABANADES S, VILLAFAN-VIDALES H I. CO2 and H2O conversion to solar fuels via two-step solar thermochemical looping using iron oxide redox pair[J]. Chemical Engineering Journal, 2011, 175: 368-375. doi:10.1023/a:1010650624155
80ABANADES S. Metal oxides applied to thermochemical water-splitting for hydrogen production using concentrated solar energy[J]. ChemEngineering, 2019, 3(3): 63. doi:10.1023/a:1010650624155
81BACHIROU G L, SHUAI Y, ZHANG J, et al. Syngas production by simultaneous splitting of H2O and CO2 via iron oxide (Fe3O4) redox reactions under high-pressure[J]. International Journal of Hydrogen Energy, 2016, 41(44): 19936-19946. doi:10.1023/a:1010650624155
82TANG Q, HUANG K. Determining the kinetic rate constants of Fe3O4-to-Fe and FeO-to-Fe reduction by H2[J]. Chemical Engineering Journal, 2022, 434: 134771. doi:10.1023/a:1010650624155
83BULFIN B, VIETEN J, AGRAFIOTIS C, et al. Applications and limitations of two step metal oxide thermochemical redox cycles: A review[J]. Journal of Materials Chemistry A, 2017, 5(36): 18951-18966. doi:10.1023/a:1010650624155
84GUO Y, CHEN J, SONG H, et al. A review of solar thermochemical cycles for fuel production[J]. Applied Energy, 2024, 357: 122499. doi:10.1023/a:1010650624155
85XU D, WANG B, LI X, et al. Solar-driven biomass chemical looping gasification using Fe3O4 for syngas and high-purity hydrogen production[J]. Chemical Engineering Journal, 2024, 479: 147901. doi:10.1023/a:1010650624155
86KODAMA T, IMAIZUMI N, GOKON N, et al. Comparison studies of reactivity on nickel-ferrite and cerium-oxide redox materials for two-step thermochemical water splitting below 1400 ℃[C]// BEHZAD H. ASME 2011 5th International Conference on Energy Sustainability. Washington, DC, USA: NUMAN A, 2012: 1617-1623. doi:10.1023/a:1010650624155
87YADAV D, BANERJEE R. A review of solar thermochemical processes[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 497-532. doi:10.1023/a:1010650624155
88LU Y, ZHU L, AGRAFIOTIS C, et al. Solar fuels production: Two-step thermochemical cycles with cerium-based oxides[J]. Progress in Energy and Combustion Science, 2019, 75: 100785. doi:10.1023/a:1010650624155
89EROGBOGBO F, LIN T, TUCCIARONE P M, et al. On-demand hydrogen generation using nanosilicon: splitting water without light, heat, or electricity[J]. Nano Letters, 2013, 13(2): 451-456. doi:10.1023/a:1010650624155
90ROJAS J, HARIBAL V, JUNG I, et al. Computational discovery of metal oxides for chemical looping hydrogen production[J]. Cell Reports Physical Science, 2021, 2(3):100362. doi:10.1023/a:1010650624155
91WANG L, MA T, CHANG Z, et al. Solar fuels production via two-step thermochemical cycle based on Fe3O4/Fe with methane reduction[J]. Solar Energy, 2019, 177: 772-781. doi:10.1023/a:1010650624155
92GOKON N, MURAYAMA H, NAGASAKI A, et al. Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices[J]. Solar Energy, 2009, 83(4): 527-537. doi:10.1023/a:1010650624155
93GOKON N, MURAYAMA H, UMEDA J, et al. Monoclinic zirconia-supported Fe3O4 for the two-step water-splitting thermochemical cycle at high thermal reduction temperatures of 1400-1600 ℃[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1208-1217. doi:10.1023/a:1010650624155
94KIM C S, KIM D Y, CHO J H, et al. A study on pill temperature control method and hydrogen production with 2-step thermochemical cycle using dish type solar thermal system[J]. Journal of the Korean Solar Energy Society, 2013, 33(3): 42-50. doi:10.1023/a:1010650624155
95TANG Q, MAN Y, HUANG K. Fe3O4/ZrO2 composite as a robust chemical looping oxygen carrier: a kinetics study on the reduction process[J]. ACS Applied Energy Materials, 2021, 4(7): 7091-7100. doi:10.1023/a:1010650624155
96ROBERTS S J, DODSON J J, CARPINONE P L, et al. Evaluation of nanoparticle zirconia supports in the thermochemical water splitting cycle over iron oxides[J]. International Journal of Hydrogen Energy, 2015, 40(46): 15972-15984. doi:10.1023/a:1010650624155
97XIAO L, WU S Y, LIY R. Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redoxreactions[J]. Renewable Energy, 2012, 41: 1-12. doi:10.1023/a:1010650624155
98ZHANG D W, DE SANTIAGO H A, XU B Y, et al. Compositionally complex perovskite oxides for solar thermochemical water splitting[J]. Chemistry of Materials, 2023, 35(5): 1901-1915. doi:10.1023/a:1010650624155
99MONAMA G R, RAMOHLOLA K E, IWUOHA E I, et al. Progress on perovskite materials for energy application[J]. Results in Chemistry, 2022, 4: 100321. doi:10.1023/a:1010650624155
100CHENG X H, HAN Y, CUI B B. Fabrication strategies and optoelectronic applications of perovskite heterostructures[J]. Advanced Optical Materials, 2022, 10(5): 2102224. doi:10.1023/a:1010650624155
101DOCAMPO P, BEIN T. A long-term view on perovskite optoelectronics[J]. Accounts of Chemical Research, 2016, 49(2): 339-346. doi:10.1023/a:1010650624155
102RAY A, BASU T. Perovskite metal oxide-based composite materials: potential candidates for electronics and optoelectronics[M]// Perovskite Metal Oxides. Amsterdam: Elsevier, 2023: 203-229. doi:10.1023/a:1010650624155
103AHMAD S, HUSAIN A, KHAN M M A, et al. Perovskite-based material for sensor applications[M]// Hybrid Perovskite Composite Materials. Amsterdam: Elsevier, 2021: 135-145. doi:10.1023/a:1010650624155
104ZHANG Y P, LIM CK, DAI Z G, et al. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities[J]. Physics Reports, 2019, 795: 1-51. doi:10.1023/a:1010650624155
105陈玉芳, 王雪飞, 白浩洋, 等. 钙钛矿/石墨相氮化碳复合光催化剂的研究进展[J]. 中国有色金属学报, 2021, 31(7): 1856-1868. doi:10.1023/a:1010650624155
106王 东, 范建华, 刘春明, 等. BaCe1-xYxO3-α及BaCe0.9Sm0.1-O3-α质子导体的表征及组成氢泵对铝熔体的脱氢[J]. 金属学报, 2007, 43(11): 1228-1232. doi:10.1023/a:1010650624155
107RAHMAN S, HUSSAIN A, NOREEN S, et al. Structural, electronic, optical and mechanical properties of oxide-based perovskite ABO3 (A=Cu, Nd and B=Sn, Sc): A DFT study[J]. Journal of Solid State Chemistry, 2023, 317: 123650. doi:10.1023/a:1010650624155
108AKAOGI M. Crystal chemistry, phase relations, and energetics of high-pressure ABO3 perovskites[M]// Advancesin Geological Science. Singapore: Springer Nature Singapore, 2022: 115-132. doi:10.1023/a:1010650624155
109杨亚辉, 陈启元, 尹周澜, 等. K2La2Ti3O10的制备和光催化产氢性能[J]. 中国有色金属学报, 2007, 17(4): 642-648. doi:10.1023/a:1010650624155
110VIETEN J, BULFIN B, HUCK P, et al. Materials design of perovskite solid solutions for thermochemical applications[J]. Energy & Environmental Science, 2019, 12(4): 1369-1384. doi:10.1023/a:1010650624155
111VIETEN J, BULFIN B, STARR D E, et al. Redox behavior of solid solutions in the SrFe1-xCuxO3-δ system for application in thermochemical oxygen storage and air separation[J]. Energy Technology, 2019, 7(1): 131-139. doi:10.1023/a:1010650624155
112HILL R J, JACKSON I. The thermal expansion of ScAlO3—A silicate perovskite analogue[J]. Physics and Chemistry of Minerals, 1990, 17(1): 89-96. doi:10.1023/a:1010650624155
113FENG J, XIAO B, ZHOU R, et al. Anisotropic elastic and thermal properties of the double perovskite slab-rock salt layer Ln2SrAl2O7 (Ln=La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure[J]. Acta Materialia, 2012, 60(8): 3380-3392. doi:10.1023/a:1010650624155
114WANG X, HAN Y, SONG X, et al. An insight into the effects of transition metals on the thermal expansion of complex perovskite compounds: An experimental and density functional theory investigation[J]. Physical Chemistry Chemical Physics, 2018, 20(26): 17781-17789. doi:10.1023/a:1010650624155
115QIAN X, HE J G, MASTRONARDO E, et al. Outstanding properties and performance of CaTi0.5Mn0. 5O3-δ for solar-driven thermochemical hydrogen production[J]. Matter, 2021, 4(2): 688-708. doi:10.1023/a:1010650624155
116BARCELLOS D R, COURY F G, EMERY A, et al. Phase identification of the layered perovskite CexSr2-xMnO4 and application for solar thermochemical water splitting[J]. Inorganic Chemistry, 2019, 58(12): 7705-7714. doi:10.1023/a:1010650624155
117HAEUSSLER A, JULBE A, ABANADES S. Investigation of reactive perovskite materials for solar fuel production via two-step redox cycles: Thermochemical activity, thermodynamic properties and reduction kinetics[J]. Materials Chemistry and Physics, 2022, 276: 125358. doi:10.1023/a:1010650624155
118CARRILLO R J, SCHEFFE J R. Beyond ceria: theoretical investigation of isothermal and near-isothermal redox cycling of perovskites for solar thermochemical fuel production[J]. Energy & Fuels, 2019, 33(12): 12871-12884. doi:10.1023/a:1010650624155
119BERGESON-KELLER A M, SANDERS M D, O'HAYRE R P. Reduction thermodynamics of Sr1-xCexMnO3 and CexSr2-xMnO4 perovskites for solar thermochemical hydrogen production[J]. Energy Technology, 2022, 10(1): 2100515. doi:10.1023/a:1010650624155
120QIAN X, HE J, MASTRONARDO E, et al. Favorable redox thermodynamics of SrTi0. 5Mn0.5O3-δ in solar thermochemical water splitting[J]. Chemistry of Materials, 2020, 32(21): 9335-9346. doi:10.1023/a:1010650624155
121SAI GAUTAM G, STECHEL E B, CARTER E A. Exploring Ca-Ce-M-O (M=3d transition metal) oxide perovskites for solar thermochemical applications[J]. Chemistry of Materials, 2020, 32(23): 9964-9982. doi:10.1023/a:1010650624155
122BARCELLOS D, SANDERS M D, TONG J H, et al. BaCe0.25Mn0.75O3-δ—Apromising perovskite-type oxide for solar thermochemical hydrogen production[J]. Energy & Environmental Science, 2018, 11(11): 3256-3265. doi:10.1023/a:1010650624155
123WANG L L, AL-MAMUN M, LIU P, et al. La1-xCax-Mn1-yAlyO3 perovskites as efficient catalysts for two-step thermochemical water splitting in conjunction with exceptional hydrogen yields[J]. Chinese Journal of Catalysis, 2017, 38(6): 1079-1086. doi:10.1023/a:1010650624155
124TAKACS M, HOES M, CADUFF M, et al. Oxygen nonstoichiometry, defect equilibria, and thermodynamic characterization of LaMnO3 perovskites with Ca/Sr A-site and AlB-site doping[J]. Acta Materialia, 2016, 103: 700-710. doi:10.1023/a:1010650624155
125NGOENSAWAT A, TONGNAN V, LAOSIRIPOJANA N, et al. Effect of La and Gd substitution in BaFeO3-δ perovskite structure on its catalytic performance for thermochemical water splitting[J]. Catalysis Communications, 2020, 135: 105901. doi:10.1023/a:1010650624155
126TEKETEL B S, BESHIWORK B A, LUO X, et al. A-site doping enabled higher-oxygen-vacancy cobalt-free layered perovskite cathode for higher-performing protonic ceramic fuel cells[J]. Ceramics International, 2022, 48(24): 37232-37241. doi:10.1023/a:1010650624155
127CHEN Z P, JIANG Q Q, CHENG F, et al. Sr- and Co-doped LaGaO3-δ with high O2 and H2 yields in solar thermochemical water splitting[J]. Journal of Materials Chemistry A, 2019, 7(11): 6099-6112. doi:10.1023/a:1010650624155
128SHEELAM A, BALU S, MUNEEB A, et al. Improved oxygen redox activity by high-valent Fe and Co3+ sites in the perovskite LaNi1-xFe0.5xCo0.5xO3[J]. ACS Applied Energy Materials, 2022, 5(1): 343-354. doi:10.1023/a:1010650624155
129VIDAL A. Perovskite materials for solar thermochemical fuel production: Enhancement of fuel productivity by acid etching[J]. Energy & Fuels, 2024, 38(2): 1452-1461. doi:10.1023/a:1010650624155
130PÉREZ A, ORFILA M, LINARES M, et al. Hydrogen production by isothermal thermochemical cycles using La0.8Ca0.2MeOδ (Me=Co, Ni, Fe and Cu) perovskites[J]. International Journal of Hydrogen Energy, 2024, 52: 1101-1112. doi:10.1023/a:1010650624155
注释

张晓虎, 李光石, 程鹏, 等. 两步热化学制氢循环材料的研究进展[J]. 中国有色金属学报, 2025, 35(1): 18-33. DOI: 10.11817/j.ysxb.1004.0609.2024-44996

ZHANG Xiaohu, LI Guangshi, CHENG Peng, et al. Advances in two-step thermochemical hydrogen production cycle materials[J]. The Chinese Journal of Nonferrous Metals, 2025, 35(1): 18-33. DOI: 10.11817/j.ysxb.1004.0609.2024-44996